Induction of Multiscale Temporal Structure

نویسنده

  • Michael C. Mozer
چکیده

Learning structure in temporally-extended sequences is a diicult computational problem because only a fraction of the relevant information is available at any instant. Although variants of back propagation can in principle be used to nd structure in sequences, in practice they are not suuciently powerful to discover arbitrary contingencies, especially those spanning long temporal intervals or involving high order statistics. For example, in designing a connectionist network for music composition, we have encountered the problem that the net is able to learn musical structure that occurs locally in time|e.g., relations among notes within a musical phrase|but not structure that occurs over longer time periods|e.g., relations among phrases. To address this problem, we require a means of constructing a reduced description of the sequence that makes global aspects more explicit or more readily detectable. I propose to achieve this using hidden units that operate with diierent time constants. Simulation experiments indicate that slower timescale hidden units are able to pick up global structure, structure that simply can not be learned by standard back propagation. Many patterns in the world are intrinsically temporal, e.g., speech, music, the unfolding of events. Recurrent neural net architectures have been devised to accommodate time-varying sequences. For example, the architecture shown in Figure 1 can map a sequence of inputs to a sequence of outputs. Learning structure in temporally-extended sequences is a diicult computational problem because the input pattern may not contain all the task-relevant information at any instant. Thus,

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory

A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...

متن کامل

Hierarchical Multiscale Recurrent Neural Networks

Learning both hierarchical and temporal representation has been among the longstanding challenges of recurrent neural networks. Multiscale recurrent neural networks have been considered as a promising approach to resolve this issue, yet there has been a lack of empirical evidence showing that this type of models can actually capture the temporal dependencies by discovering the latent hierarchic...

متن کامل

Modeling Temporal Evolution and Multiscale Structure in Networks

Many real-world networks exhibit both temporal evolution and multiscale structure. We propose a model for temporally correlated multifurcating hierarchies in complex networks which jointly capture both effects. We use the Gibbs fragmentation tree as prior over multifurcating trees and a change-point model to account for the temporal evolution of each vertex. We demonstrate that our model is abl...

متن کامل

Mining Temporal Patterns in Time-series Medical Databases: A Hybrid Approach of Multiscale Matching and Rough Clustering

This paper presents a method for analyzing time-series laboratory examination databases. The key concept of this method is classification of temporal patterns using multiscale structure matching and a rough set-based clustering method. Multiscale matching enables us to capture similarity between two sequences of examinations from both short-term and long-term points of view. The rough-set based...

متن کامل

Determination of Spatial-Temporal Correlation Structure of Troposphere Ozone Data in Tehran City

Spatial-temporal modeling of air pollutants, ground-level ozone concentrations in particular, has attracted recent attention because by using spatial-temporal modeling, can analyze, interpolate or predict ozone levels at any location. In this paper we consider daily averages of troposphere ozone over Tehran city. For eliminating the trend of data, a dynamic linear model is used, then some featu...

متن کامل

Brightness induction magnitude declines with increasing distance from the inducing field edge

Brightness induction refers to a class of visual illusions where the perceived intensity of a region of space is influenced by the luminance of surrounding regions. These illusions are significant because they provide insight into the neural organization and processing strategies employed by the visual system. The nature of these processing strategies, however, has long been debated. Here we in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991